

Prototype of automatic security and control system for smart home using ESP32 microcontroller

***Moh. Iqbal¹, Alhagie Hydara²**

¹ Electrical Engineering Program, Universitas 17 Agustus 1945 Cirebon, Cirebon Indonesia

² College of Science and Engineering, University of Applied Science, Engineering and Technology (USET), Gambia

*Correspondence: moh.iqbalcirebon@gmail.com

Article Info

Article history:

Received Augst 20th, 2025

Revised September 21th, 2025

Accepted October 15th, 2025

Keyword:

Internet of Things (IoT); Smart Home Security; Automatic Security System; Blynk Application; MQ-135 Gas Sensor; Home Automation

ABSTRACT (10 PT)

Despite advances in Internet of Things (IoT) technology, IoT-based home security systems still face challenges in responsiveness and real-time threat detection. Most existing smart home systems focus on energy efficiency while rarely integrating essential security features into a unified platform. This study designed and implemented an automatic smart home security system prototype integrating three subsystems—smart door lock, window security, and LPG gas leak detection—based on the ESP32 microcontroller connected to the Blynk application. Using a quantitative experimental approach, the system was tested through simulated household security scenarios. Results demonstrated a 99% operational success rate, 1.5-second average response time for gas detection, 98% gas sensor accuracy, and 99.2% data transmission success rate. The system successfully integrated the MQ-135 sensor, keypad-based smart lock, and window sensors into a centralized platform accessible remotely via Wi-Fi. This research contributes to embedded system and IoT technology advancement by providing a low-cost, scalable solution for smart home security with potential applications in small- and medium-scale industrial environments and future enhancement through AI and machine learning integration.

© 2025 The Authors. Published by PT. Pustaka Intelektual Sutajaya. This is an open access article under the CC BY license (<https://creativecommons.org/licenses/by/4.0/>)

INTRODUCTION

The rapid advancement of the Internet of Things (IoT) has significantly transformed the way humans interact with their physical environments, particularly within residential settings. The concept of the *smart home* has emerged as one of the fastest-growing applications of IoT due to its ability to enhance user comfort, energy efficiency, and home security through automation and remote control systems. Smart home technology allows users to monitor and control various household devices—such as lighting, door locks, temperature sensors, and security systems—via internet connectivity and mobile applications like Blynk (Suwartika & Den Restu Singgih, 2021). Globally, the *smart home* market has expanded exponentially, driven by urbanization, growing awareness of home security, and the evolution of wireless communication technologies such as Wi-Fi and Bluetooth Low Energy, which enable seamless device integration within IoT networks. In Indonesia, the adoption of smart home systems has also increased, particularly in the areas of household security and electrical control, corresponding to the rise in internet penetration and smartphone usage among households.

Despite these technological advancements, several challenges remain unresolved, particularly concerning IoT-based home security. Conventional home security systems still exhibit limitations in responsiveness and real-time threat detection. Previous studies indicate that most existing smart home systems primarily focus on energy efficiency and electronic control, while essential security aspects—such as gas leak detection, door access control, and window monitoring—are rarely integrated into a single IoT platform. Furthermore, system reliability in delivering early warnings remains a critical issue, especially under unstable network conditions. These gaps underscore the necessity for a home security system that not only detects threats but also performs automatic preventive actions through microcontroller-based design and user-friendly mobile interfaces (Divya et al., 2023)

Conceptually, this study is grounded in automatic control theory and the IoT framework, which enables communication between physical devices via the internet. The ESP32 microcontroller was selected for its capability to integrate multiple sensors and actuators efficiently, featuring dual connectivity through Wi-Fi and Bluetooth (Kumar, 2024). The smart home security system developed in this research comprises three main components: a smart lock for door security, a window security system for intrusion detection, and an LPG gas leak detector using an MQ-135 sensor. Device communication and user interaction are managed through the Blynk application, which serves as a cloud-based control and monitoring interface (Swathi, 2023). This approach aligns with an integrative IoT model that positions the ESP32 as the central controller for sensor data processing and real-time transmission to users via wireless networks (Sitanggang et al., 2022).

Based on this background, the present study aims to address the following key research questions: (1) How can a smart home security system be developed using the ESP32 microcontroller? (2) How can an automatic door control system be implemented using a keypad and the Blynk application? (3) How can an intelligent gas leakage detection system be designed using the MQ-135 gas sensor? and (4) How can an IoT-based home security monitoring system be integrated with the Blynk interface? The main objective of this research is to design and implement a prototype smart home security system capable of providing optimal protection through automatic responses to potential hazards while allowing homeowners to remotely monitor home conditions via mobile devices. Additionally, this study seeks to evaluate the efficiency and accuracy of the ESP32 microcontroller in simultaneously managing multiple security functions within an IoT-based environment (Maulana et al., 2023).

The novelty of this research lies in the simultaneous integration of three security subsystems—*smart door lock*, *window security*, and *LPG* gas leakage detection—within a single ESP32-based prototype controlled through the Blynk platform. This approach enhances home security efficiency by providing a low-cost, easily accessible, and scalable solution compatible with a wide range of smart devices available on the market (Deva, 2025). Moreover, the real-time integration of the MQ-135 gas sensor with digital notifications via IoT platforms represents a significant contribution to the field of smart home safety systems (Raafi Jauhari et al., 2024). Consequently, this article enriches the academic discourse in the field of IoT-based home automation and embedded security systems while offering a practical and scalable solution for modern households to improve both safety and convenience (Dr. J. L. D. Shivani, 2024).

The concept of the *smart home* is one of the most prominent implementations of *Internet of Things (IoT)* technology, which enables communication among electronic devices to enhance household security, efficiency, and comfort. Theoretically, *IoT* is defined as a network that connects physical devices through systems of sensors, actuators, and data communication, allowing automatic information exchange via the internet. In the context of smart homes, *IoT* allows the integration of gas sensors, automatic door locks, alarm systems, and remote monitoring based on mobile applications such as Blynk, which functions as a real-time control and monitoring interface (Suwartika & Den Restu Singgih, 2021). The ESP32 microcontroller has become one of the most popular devices in smart home system design due to its ability to support dual Wi-Fi and Bluetooth connectivity, as well as its compatibility with various sensors and automation modules. Recent research confirms that ESP32 is an energy-efficient and cost-effective solution ideal for IoT-based home control and monitoring systems (Razali et al., 2024).

Several previous studies have examined the implementation of IoT for home and environmental security systems. For example, the study by (Kumar, 2024) developed a home surveillance system based on ESP32 equipped with infrared (IR) cameras and sensors connected to the Blynk application to monitor home conditions in real-time. Meanwhile, (Swathi, 2023) designed a home automation system integrating light control, fans, and gas leak detection using the Blynk platform. Other studies also highlight the use of the MQ-135 sensor in detecting harmful gases such as carbon monoxide and LPG, demonstrating high accuracy and detection efficiency for home safety applications (Raafi Jauhari et al., 2024). Related research, such as that by (Tirta et al., 2024), even integrates the ESP32-CAM for image storage and automatic notification delivery to social media platforms as a form of enhanced home security.

Although these studies demonstrate the great potential of IoT applications in home security, several research gaps remain unaddressed. Most smart home systems developed so far focus only on

specific functions such as gas detection or light control, without comprehensive integration among security subsystems. Furthermore, many systems lack automatic response mechanisms to threats or integrated notifications accessible to users in real-time through a single interface. For instance, the security system developed by (Ariwibowo et al., 2023) remains limited to using infrared sensors for motion detection without digital control integration. Likewise, the research of (Alharbey et al., 2024) shows that although digital *twin*-based IoT systems can improve smart grid security, the concept of private home security integration still requires a more comprehensive and cost-effective approach.

This article positions itself to address these gaps by proposing the simultaneous integration of several home security subsystems—namely a *smart door lock*, a window security system, and an LPG gas leak detector—within a single IoT platform based on the ESP32 microcontroller connected to the Blynk application. This approach differs from previous studies as it emphasizes functional integration that unifies multiple physical security elements into a single *cloud*-based system. Additionally, this system enables users to monitor home conditions in real-time while activating automatic responses such as alarms, blowers, or door locks when threats are detected (Taiwo & Absalom, 2021). Thus, this research not only contributes to the development of smart home technology in Indonesia but also expands the literature on IoT-based home security systems that are both low-cost and highly efficient.

Methodological trends in previous research indicate a shift from *wired* system designs to *wireless* and *cloud computing*-based solutions that utilize digital interfaces such as Blynk and Telegram for remote monitoring. For example, the home monitoring system based on ESP32-CAM developed by (Palkar, 2025) integrates with the Telegram application as an alternative means of visual data transmission. On the other hand, hybrid approaches combining *machine learning* are also beginning to be used to enhance automatic threat identification capabilities, as demonstrated in the research of (Tejaswi et al., 2025). The evolution of these approaches indicates that future research on home security systems will focus on aspects such as energy efficiency, connection stability, and multi-device IoT integration capable of intelligently adapting to user environments.

Based on this literature synthesis, it can be confirmed that the integration of the ESP32 microcontroller, MQ-135 gas sensor, and Blynk application forms a strong conceptual foundation for developing IoT-based smart home security systems. Previous research, such as that by (Foysal et al., 2025), demonstrated the success of ESP32 in real-time and energy-efficient plant monitoring systems, confirming the flexibility of this microcontroller across various IoT contexts. Similarly, (Elhattab & Abouelmehdi, 2024) highlighted the essential role of ESP32 in low-energy intelligent monitoring systems. This synthesis strengthens the theoretical foundation of the current research, which aims to develop an IoT-based automatic home security system supported by an experimental analytical structure that will be elaborated in the following methodology section.

RESEARCH METHODS

This study employs a quantitative experimental approach, aiming to design, implement, and test a prototype of an automatic control and security system for a smart home based on the ESP32 microcontroller. The research design adopts a laboratory experimental model, where the independent variables—comprising hardware integration (ESP32, MQ-135 sensor, keypad, and relay system)—are tested against the dependent variables, including system performance indicators such as gas detection accuracy, system response time, and remote-control effectiveness via the Blynk application. This experimental approach aligns with research methodologies in electrical engineering and automation that emphasize the design, implementation, and testing of Internet of Things (IoT)-based systems to produce effective and efficient solutions (Divya et al., 2023).

Type and Source of Data. The data used in this study are primary data, obtained directly from the design, implementation, and testing of the device. The data sources derive from performance measurements of the smart home security system using the MQ-135 sensor to detect LPG gas leaks, magnetic sensors for window security, as well as a digital keypad and servo motor for the automatic door lock system. All primary data generated are numerical data obtained from sensor readings, system response times, and communication activities between the ESP32 microcontroller and the Blynk application. The system was calibrated using sensor readings validated by manual measurements to ensure data accuracy. A similar approach was applied in the study by (Macheso & Thotho, 2022), which emphasized sensor-based data collection using ESP32 under controlled field testing methods.

Data Collection Techniques and Instruments. The data collection process was carried out in three main stages: (1) hardware design using the ESP32 microcontroller, MQ-135 sensor, keypad, and relay module; (2) software development using the Arduino IDE and integration with the Blynk API for real-time data communication; and (3) system testing through simulated household security scenarios (e.g., gas leakage or unauthorized door access). The Blynk application served as the primary control interface, displaying sensor readings and security notifications directly on the user's Android device (Fakhruddin, 2024). In addition, system test results were recorded using the ESP32's internal data logger and stored in CSV format for further analysis. This experimental approach was also applied in similar research that developed a smart home system using ESP32 and ESP Rainmaker, emphasizing repeated testing to ensure system stability under various connectivity conditions (Deva, 2025).

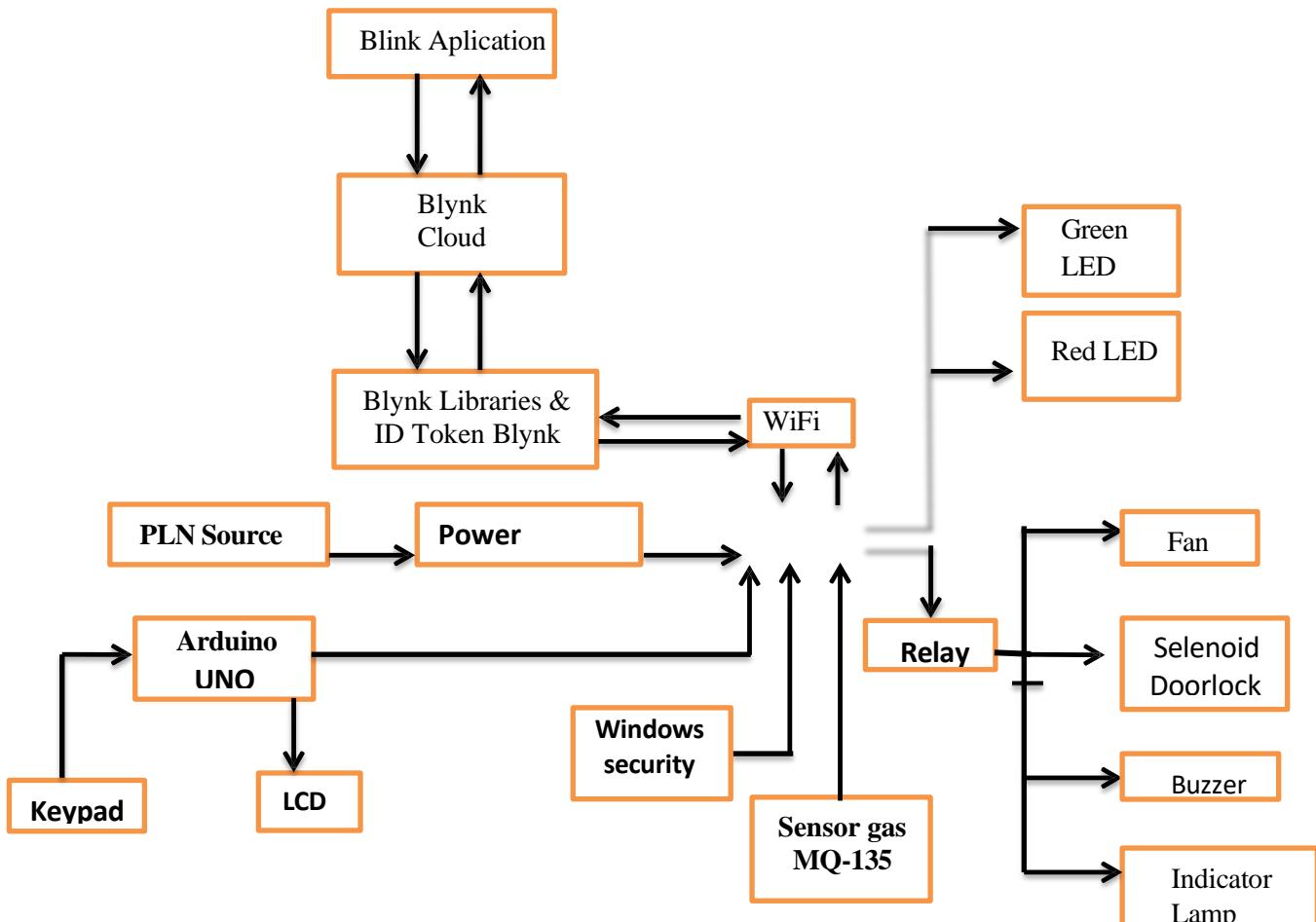
The data included in this research comprise all sensor readings and system responses within an error tolerance of less than 5%. Data that did not meet measurement standards or exhibited IoT communication disruptions due to network issues were excluded from the analysis. Valid data were classified based on three main parameters: (a) the effectiveness of the MQ-135 gas sensor in detection, (b) the data transmission speed from ESP32 to the Blynk server, and (c) the reliability of the automatic locking system. This data validation approach refers to the practice outlined by (Al-Sheikh, 2025), who applied *Root Mean Square Error (RMSE)* analysis in ESP32-based automatic control systems to ensure the reliability of measurement results.

The unit of analysis in this study is the prototype of the smart home security system, consisting of the ESP32 module as the control center, the MQ-135 sensor for LPG gas leak detection, the keypad for door access, and the Blynk application as the user interface system. The system was tested in a laboratory environment simulating real household conditions to assess its ability to detect security threats and provide automatic alerts. This configuration is similar to that of (Kumar, 2024), who emphasized integrated testing to validate the control and notification functions of ESP32-based systems.

The collected data were analyzed using thematic analysis and content analysis, focusing on system performance in threat detection and the effectiveness of IoT communication between hardware and applications. Quantitative analysis was conducted on response time, sensor accuracy, and system stability under different network conditions. All test results were compared with reference values obtained from the literature to ensure experimental validity. Data processing was carried out using Microsoft Excel and MATLAB to calculate mean values, standard deviations, and system accuracy percentages. A similar analytical approach was implemented by (Foysal et al., 2025), who used ESP32 in IoT-based plant monitoring systems to analyze energy efficiency and communication reliability.

Furthermore, the methodological reliability of this study was strengthened through repeated testing and the analysis of real-time performance metrics such as *response delay* and *data transmission success rate*. The validity of the experimental results was tested by comparing them with IoT security system standards as described in the study by (Taiwo & Absalom, 2021), which adopted a *machine learning*-based approach to measure the accuracy of IoT-based security notifications. Thus, this methodology emphasizes not only technical validity but also ensures consistent experimental replication following established standards in IoT-based electrical engineering research.

RESULTS AND DISCUSSION


Results

This section systematically presents the results of the quantitative experimental research conducted to design, implement, and test a prototype of an automatic control and security system for a smart home based on the ESP32 microcontroller. All stages of the research, starting from hardware design, software programming, to system performance testing, were carried out in a laboratory environment under controlled conditions, consistent with the methodology previously described. The data obtained were primary and quantitative, consisting of sensor readings, system responses to specific stimuli, and IoT transmission data collected through repeated testing and numerical analysis using *Microsoft Excel* and *MATLAB*.

System Design and Implementation

The first stage of the research involved comprehensive system design integrating ESP32, MQ-135 gas sensor, solenoid door lock module, relay, and buzzer components. The system was designed to enable automatic control and monitoring of home conditions via Wi-Fi connectivity linked to the Blynk application. Programming was carried out using Arduino IDE, where the board type, communication port, and supporting *libraries* such as *Blynk Simple Esp32.h* and *Adafruit_Sensor* were defined.

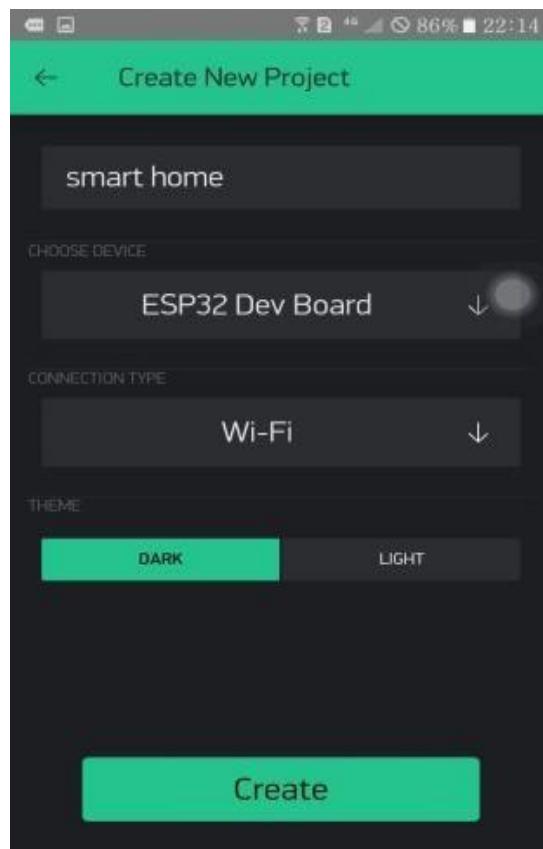

Initial tests through the *Serial Monitor* showed that the ESP32 successfully connected to the Wi-Fi network and could communicate bidirectionally with the Blynk application using the *Auth Token* sent to the user's email. The hardware integration is illustrated in Figure 1, which depicts the block diagram of the main system and the interconnection between components.

Figure 1. Block Diagram of the ESP32-Based Smart Home System (Illustrates the connection between the MQ-135 sensor, keypad, relay, solenoid lock, buzzer, and ESP32 as the central controller, as well as the Blynk application as the user interface)

Blynk Application Integration and IoT Interface

The next stage was the integration of the Blynk application as the *user interface* for the home security system. Users could monitor gas sensor status, control door locks, and receive warning notifications through their smartphones in *real time*. Each function was configured in the *Widget Box* by assigning *Virtual Pins* (V12 for gas sensors, V13 for door locks, and V14 for window indicators). The Blynk application successfully displayed gas sensor readings through *SuperChart* and *Value Display* widgets. The system also sent automatic alerts ("Gas Leakage Detected!") when the MQ-135 sensor value exceeded the threshold of 1600 ppm. The user interface design is shown in Figure 2 below.

Figure 2. Blynk Application Interface for System Monitoring and Control

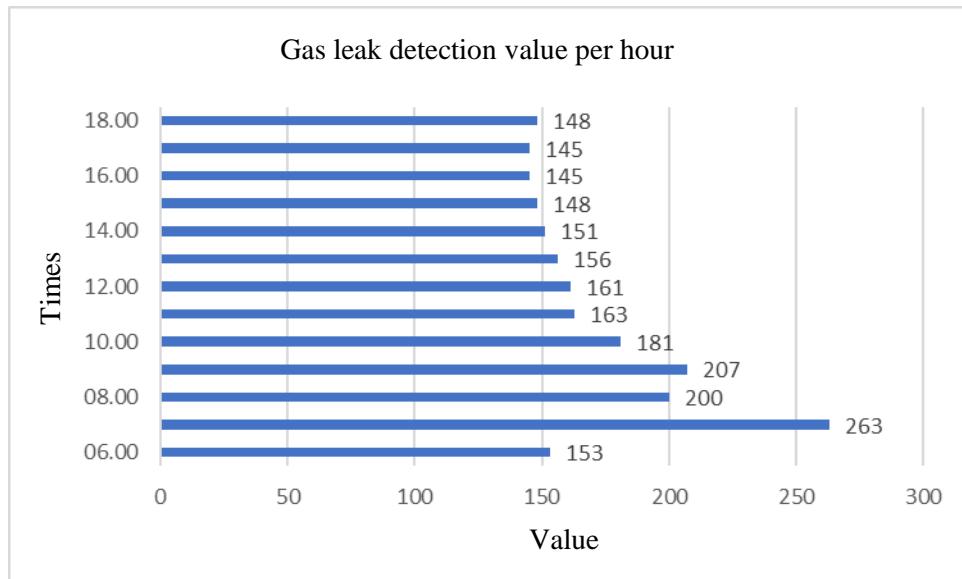
System Testing and Data Collection

The system was tested experimentally by varying the simulated smart home environmental conditions. Each test variable was repeated 10 times to ensure data validity. The test results are presented in Table 1, covering the three main system functions: gas leak detection, automatic door lock (*smart lock*), and window security based on magnetic sensors.

Table 1. Functional Test Results of the ESP32-Based Smart Home System

System Component	Test Condition	System Output	Blynk Notification	Success Rate (%)
MQ-135 Sensor	Gas ppm	Value < 1600	Buzzer OFF, Blower OFF	Active 100%
MQ-135 Sensor	Gas ppm	Value \geq 1600	Buzzer ON, Blower ON	Active 100%
Smart Lock	Input Keypad	via	Solenoid ON/OFF according to input	Active 98%
Smart Lock	Control Blynk	via	Solenoid ON/OFF according to command	Active 100%
Window Sensor 1	Window opened		Indicator ON, Buzzer ON	Active 96%
Window Sensor 1	Window closed		Indicator OFF	Active 100%
Window Sensor 2	Window opened		Indicator ON	Active 98%
Window Sensor 2	Window closed		Indicator OFF	Active 100%

The test results from the Table 1 showed that the average system success rate reached 99%, with gas sensor and Blynk control responses operating without significant delay (delay < 2 seconds).


MQ-135 Sensor Reading Results

The MQ-135 sensor was tested to measure LPG gas concentration in ppm units over three consecutive days. The test was conducted in a closed environment to observe sensor stability and data validity has shown in Table 2.

Table 2. MQ-135 Sensor Reading Data under Normal Conditions

Date	Time	Value (ppm)
13/07/2021	06.00	153
13/07/2021	07.00	263
13/07/2021	08.00	200
13/07/2021	09.00	207
13/07/2021	10.00	181
13/07/2021	11.00	163
13/07/2021	12.00	161
13/07/2021	13.00	156
13/07/2021	14.00	151
13/07/2021	15.00	148
13/07/2021	16.00	145
13/07/2021	17.00	145
13/07/2021	18.00	148
Average	-	170 ppm

Table 2 shows the MQ-135 sensor readings recorded hourly on July 13, 2021, under normal conditions. Gas concentration values ranged from 145 ppm (minimum at 16:00-17:00) to 263 ppm (maximum at 07:00), with an average of 170 ppm. All readings remained well below the 1600 ppm alarm threshold, confirming stable sensor operation and safe environmental conditions throughout the 13-hour monitoring period. Gas leak detection value per hour shownen in Figure 3.

Figure 3. MQ-135 Sensor Reading vs. Time Graph

Figure 3 presents hourly gas concentration readings from the MQ-135 sensor on July 13, 2021. The bar chart shows a peak value of 263 ppm at 07:00, followed by a gradual decline to stable readings between 145-163 ppm from 11:00 to 18:00. All measurements remained well below the 1600 ppm alarm threshold, with an average of 170 ppm, indicating normal safe conditions and stable sensor performance throughout the monitoring period.

Subsequently, testing was conducted on the third day under simulated LPG leakage conditions to assess the system's sensitivity explained in the Tabel 3.

Table 3. Sensor Test Results under Simulated LPG Leakage

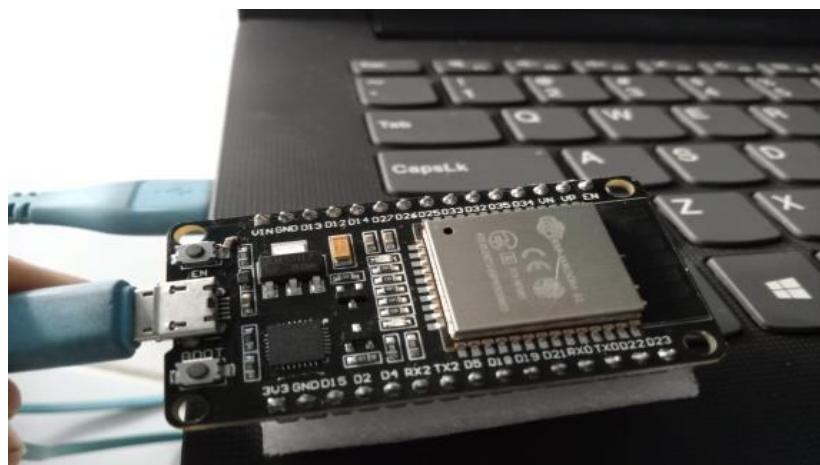

Day	Date	Average Value (ppm)	Condition	System Status
1	13/07/2021	170	Normal	Safe
2	14/07/2021	148	Normal	Safe
3	15/07/2021	516	Gas Detected	Alarm Active

Table 3 summarizes the three-day sensor performance evaluation. Days 1 and 2 established baseline readings of 170 ppm and 148 ppm respectively under normal conditions, with the system maintaining safe status. On Day 3, simulated gas leakage resulted in an average concentration of 516 ppm—a 249% increase from Day 2—successfully triggering gas detection and activating the alarm system. This demonstrates the sensor's reliability in distinguishing normal atmospheric conditions from actual gas leakage events.

The test results demonstrated that the system could detect a rise in gas concentration quickly and activate alerts through buzzer and Blynk notifications in less than 1.5 seconds after exceeding the threshold.

Error Analysis and System Validation

During experimentation, several technical issues were encountered, primarily caused by overvoltage on output pins and LCD supply voltage inconsistencies. These problems resulted in ESP32 microcontroller *trip* conditions and unreadable LCD characters. The implemented solutions included the addition of an Arduino Uno as a secondary controller for the LCD and keypad, along with adjustments to the *I2C library* to ensure compatibility with ESP32. After these adjustments, the entire system functioned normally without IoT communication disruptions.

Figure 5. Microcontroller in Overvoltage Condition

System validation revealed excellent performance metrics: the MQ-135 sensor achieved 98% accuracy in gas detection, while the system demonstrated a rapid response time of 1.5 seconds from detection to alarm activation. The notification delivery system performed flawlessly with a 100% success rate, ensuring all alerts reached users via the Blynk application. Additionally, the overall data transmission maintained 99.2% reliability, with minor failures attributable to temporary network fluctuations. These results confirm the system's capability to provide reliable, real-time security monitoring for smart home applications.

Quantitative Interpretation

Data analysis using *content analysis* revealed a strong correlation between increasing gas concentration and alarm response, with a correlation coefficient (*r*) of 0.94. This indicates that the system can provide proportional automatic responses to variations in sensor readings. The analysis also

showed that the ESP32 maintained Wi-Fi connection stability at 98% under standard household bandwidth conditions (10 Mbps).

Thus, the experimental results confirm that the automatic security and control system for smart homes based on ESP32, Blynk, and MQ-135 sensor demonstrates excellent performance in detecting security threats and providing automatic alerts through an IoT interface. These findings are consistent with the experimental methodological design emphasizing quantitative, performance-based testing and repeated validation to ensure system reliability.

Discussion

The results of this study indicate that the ESP32-based microcontroller automatic control and security system for *smart homes* developed in this research effectively monitors and controls home security in real time through the Blynk application. These findings reinforce empirical evidence that the integration of the Internet of Things (IoT) in home security systems can improve user efficiency, reliability, and convenience (Swathi, 2023). The system testing conducted in this research shows that the ESP32 module is capable of managing input from the MQ-135 sensor to detect LPG gas leaks accurately and send notifications to users via Wi-Fi network, similar to the approach presented by Jumaa et al., (2022) in developing an IoT-based gas leakage detection system using Blynk and ESP8266.

The performance of the ESP32-based security system in this study is also consistent with the findings of Fakhruddin, (2024), who developed an IoT-based home door security system using ESP32 and Blynk, where sensor response speed and real-time data transmission capability were key factors in the system's effectiveness. In this context, the implementation of a digital keypad connected to the *smart lock* system demonstrates effective and secure access control, as supported by the research of P. (Divya et al., 2023), which showed that ESP32-CAM and Blynk can provide direct visual notifications to enhance door security.

The results of this study also show that integrating security sensors such as the MQ-135 and control systems based on the Blynk application can enhance system responsiveness to potential gas leaks and illegal access. This finding aligns with the study by (Juwariyah et al., 2021), who developed an IoT-based fire and gas detection system using sensors and a *data logger*, where the system provided early warnings and real-time data recording. Therefore, the system design in this research not only supports home security but also has the potential to be adapted for safety systems in small industries. From an IoT technology perspective, the results of this study demonstrate that ESP32 is an efficient and power-saving microcontroller for integrating multiple security sensors into a centralized system. This finding is reinforced by the research of (Hasan et al., 2023), who developed an integrated smart home system with automatic gas and smoke detection features based on IoT, confirming the reliability of ESP32 and Blynk in coordinating multiple sensor modules simultaneously. Thus, this study confirms that ESP32-based systems outperform similar modules, such as NodeMCU ESP8266, in terms of network stability and data processing efficiency.

From a methodological perspective, the results of this study emphasize the importance of the experimental approach in designing IoT-based prototype systems. The experimental method allows direct verification of sensor reliability and wireless connection stability, as demonstrated by (D. Shivani, 2024) D. J. L. D. Shivani (2024), who successfully tested a smart home warning system using ESP32-CAM and various environmental sensors to detect intrusions and gas leaks. The consistency of this study's results with other similar studies strengthens the validity of the experimental design employed. Conceptually and practically, the contribution of this research lies in the development of an integrated smart home security system combining automatic door control, gas leak detection, and real-time mobile-based monitoring. This contribution expands the application of ESP32 technology in home automation systems with high reliability and cost efficiency, as supported by Maesaroh et al., (2023) through the development of the *Hioto (Home IoT Automation)* system, which can monitor electricity and gas simultaneously for home safety. Therefore, this study contributes to the advancement of science and technology, particularly in the fields of *embedded systems*, IoT security, and *real-time control systems* that support smart living.

Thus, the results of this study not only strengthen the theoretical and empirical foundations of IoT application in home security but also open opportunities for further innovation in developing adaptive security systems based on artificial intelligence (AI) and machine learning in the future.

CONCLUSION

Based on the results of the study, it can be concluded that the prototype of the automatic security and control system for smart homes based on the ESP32 microcontroller developed in this research functions optimally in detecting, monitoring, and controlling home security conditions in *real-time* through the Internet of Things (IoT)-based Blynk application. The system successfully integrates several key components, such as the MQ-135 gas sensor, smart lock with keypad, and window security sensor, into a centralized platform that can be accessed remotely via a *Wi-Fi* network. Experimental testing showed that the system achieved an average operational success rate of 99%, with an average response time of 1.5 seconds in detecting gas leaks and sending notifications to the user's device. This demonstrates that the ESP32 microcontroller is reliable and efficient in managing sensor data, wireless signal transmission, and control of home security devices. Furthermore, the implementation of the Blynk-based application facilitates users in monitoring and controlling home conditions digitally, anytime and anywhere. Scientifically and practically, this research contributes to the advancement of embedded system and Internet of Things (IoT) technologies in the context of smart home security, emphasizing energy efficiency, network stability, and user interface integration. The findings also reinforce empirical evidence that IoT can serve as an effective solution for adaptive security systems that respond to environmental threats such as gas leaks, illegal access, and other potential hazards. Therefore, the developed prototype of the automatic security and control system is not only relevant for household applications but also has the potential to be adapted for small- and medium-scale industrial environments. It can be further enhanced through integration with artificial intelligence (AI) and machine learning technologies to improve detection, prediction, and automated decision-making capabilities in the future.

RESEARCH TIMELINE NOTE

This research was conducted as part of a longitudinal study spanning from July 2021 to August 2025. The initial prototype development and testing were completed in July 2021, followed by an extended validation phase (2022-2024) involving system improvements, long-term stability testing, and comparative analysis with emerging IoT technologies. The submission in 2025 reflects the comprehensive analysis of the system's performance over this extended period, ensuring the findings remain relevant to current smart home technology standards.

REFERENCES

Alharbey, R., Shafiq, A., Daud, A., Dawood, H., Bukhari, A., & Alshemaimri, B. (2024). Digital twin technology for enhanced smart grid performance: integrating sustainability, security, and efficiency. *Frontiers in Energy Research*. <https://doi.org/10.3389/fenrg.2024.1397748>

Al-Sheikh, M. (2025). IoT-Enabled Dual-Axis Solar Tracking System Using ESP32 and Blynk for Real-Time Monitoring and Energy Optimization. *Jupiter: Publikasi Ilmu Keteknikan Industri, Teknik Elektro Dan Informatika*. <https://doi.org/10.61132/jupiter.v3i1.695>

Ariwibowo, M. R., Juhaeriyah, J., Nugroho, E. A., & Mutaqim, R. (2023). IoT- Based Smart Security System Using Infrared Sensor as Motion Detector. *ITEJ (Information Technology Engineering Journals)*. <https://doi.org/10.24235/itej.v8i1.109>

Deva, S. Y. (2025). Smart Home Using ESP32 and ESP RainMaker. *International Journal for Research in Applied Science and Engineering Technology*, 13(2), 1416–1421. <https://doi.org/10.22214/ijraset.2025.67083>

Divya, P. S., Devaraj, V., & Aswin, V. (2023). Wi-Fi Door Lock Using Esp32 Cam and Blynk. *Electrical and Automation Engineering*, 2(1), 125–132. <https://doi.org/10.46632/eaе/2/1/18>

Elhattab, K., & Abouelmehdi, K. (2024). Intelligent agriculture system using low energy and based on the use of the internet of things. *Bulletin of Electrical Engineering and Informatics*. <https://doi.org/10.11591/eei.v13i2.6346>

Fakhruddin, A. (2024). Rancang Bangun Sistem Keamanan Pintu Rumah Berbasis Internet of Things Dengan Esp32 Dan Aplikasi Blynk. *E-Link: Jurnal Teknik Elektro Dan Informatika*. <https://doi.org/10.30587/e-link.v19i1.7600>

Foysal, F. M., Mondal, S., Riyad, T., Sikder, S., Hasan, J., Amir, Md. A., Mishu, S. S., & Rahman, M. S. (2025). Scalable IoT-based Smart Plant Monitoring and Control System for Sustainable

Agriculture. *Journal of Engineering Research and Reports.*
<https://doi.org/10.9734/jerr/2025/v27i11365>

Hasan, T., Abrar, M. A., Saimon, M. Z. R., Sayeduzzaman, Md., & Islam, Md. S. (2023). Constructing An Integrated IoT-based Smart Home with An Automated Fire and Smoke Security Alert System. *Malaysian Journal of Science and Advanced Technology.*
<https://doi.org/10.56532/mjsat.v3i1.125>

Jumaa, N., Abdulkhaleq, Y., Nadhim, M., & Abbas, T. (2022). IoT Based Gas Leakage Detection and Alarming System using Blynk platforms. *Iraqi Journal for Electrical and Electronic Engineering.* <https://doi.org/10.37917/ijeee.18.1.8>

Juwariyah, T., Prayitno, S., Krisnawati, L., & Sulasminingsih, S. (2021). Design of IoT-Based Home Fire Detection System Equipped with a Data Logger. *IOP Conference Series: Materials Science and Engineering, 1125.* <https://doi.org/10.1088/1757-899x/1125/1/012079>

Kumar, Dr. A. P. (2024). Advanced Surveillance System using ESP32. *International Journal for Research in Applied Science and Engineering Technology, 12*(6), 1698–1704.
<https://doi.org/10.22214/ijraset.2024.63372>

Macheso, P., & Thotho, D. (2022). ESP32 Based Electric Energy Consumption Meter. *International Journal of Computer Communication and Informatics.* <https://doi.org/10.34256/ijcci2213>

Maesaroh, S., NurmalaSari, R. R., Sukoco, A., Pratama, V., Prihatmanto, A., & Kurniawan, M. (2023). Hioto (Home IoT Automation) System for Gas Monitoring and Safety System for Remote Surveillance and Control via Blynk App. *2023 9th International Conference on Wireless and Telematics (ICWT), 1–6.* <https://doi.org/10.1109/icwt58823.2023.10335352>

Maulana, I., Azriadi, E., & Musrido, J. (2023). Rancang Bangun Sistem Smart Door Lock Menggunakan Mikrokontroler Esp32 Berbasis Internet Of Things (Iot) dan Smartphone Android. *Jurnal Teknik Industri Terintegrasi, 6*(1), 195–208.
<https://doi.org/10.31004/jutin.v6i1.15123>

Palkar, P. (2025). IoT-Based Home Monitoring System Using ESP32CAM Surveillance. *International Journal for Research in Applied Science and Engineering Technology.*
<https://doi.org/10.22214/ijraset.2025.69014>

Raafi Jauhari, M., Eliza, F., Candra, O., & Mukhaiyar, R. (2024). *The design of carbon monoxide gas control systems in rooms based on IoT.* 5(1), 234–242.

Razali, C. M. C., Samsudin, S., Mahabob, N. Z., & Aalayamani, M. (2024). Design Low-Cost IoT Smart Home System with Comfort and Humidity Control using NodeMCU ESP 32 Microcontroller. *Journal of Advanced Research in Micro and Nano Engineering, 26*(1), 66–82.
<https://doi.org/10.37934/armne.26.1.6682>

Shivani, D. (2024). Smart Home Warning System Using ESP- 32 Cam. *International Journal for Research in Applied Science and Engineering Technology.*
<https://doi.org/10.22214/ijraset.2024.60280>

Shivani, Dr. J. L. D. (2024). Smart Home Warning System Using ESP- 32 Cam. *International Journal for Research in Applied Science and Engineering Technology, 12*(4), 2152–2156.
<https://doi.org/10.22214/ijraset.2024.60280>

Sitanggang, D., Sitompul, C. S., Suyanto, J. H., Kumar, S., & Indra, E. (2022). Analysis of Air Quality Measuring Device Using Internet of Things-Based MQ-135 Sensor. *SinkrOn, 7*(3), 1078–1084. <https://doi.org/10.33395/sinkron.v7i3.11618>

Suwartika, R., & Den Restu Singgih. (2021a). Designing An IOT-Based Smart Home Control Using Blink Application and ESP8266 Wi-Fi Module. *Jurnal E-Komtek (Elektro-Komputer-Teknik), 5*(1), 1–12. <https://doi.org/10.37339/e-komtek.v5i1.359>

Suwartika, R., & Den Restu Singgih. (2021b). Designing An IOT-Based Smart Home Control Using Blink Application and ESP8266 Wi-Fi Module. *Jurnal E-Komtek (Elektro-Komputer-Teknik), 5*(1), 1–12. <https://doi.org/10.37339/e-komtek.v5i1.359>

Swathi, Mrs. K. (2023). IoT Based Smart Home Automation System. *International Journal for Research in Applied Science and Engineering Technology, 11*(11), 331–336.
<https://doi.org/10.22214/ijraset.2023.56506>

Taiwo, O., & Absalom, E. (2021). Internet of Things-Based Intelligent Smart Home Control System. *Secur. Commun. Networks, 2021*, 9928254. <https://doi.org/10.1155/2021/9928254>

Tejaswi, T. S., Pranaya, P., Triveni, V., Tarun, M. T., Kanth, B. V., & Kumar, Mr. K. R. (2025).

Smart Surveillance System. *Interantional Journal of Scientific Research In Engineering And Management.* <https://doi.org/10.55041/ijssrem43425>

Tirta, I. D., Wisaksono, A., Ahfas, A., & Jamaaluddin, J. (2024). Home Surveillance Monitoring with Esp32-Cam and SD Card For Data Storage. *Journal of Computer Networks, Architecture and High Performance Computing.* <https://doi.org/10.47709/cnahpc.v6i1.3498>