IoT-Based kWh Monitoring Prototype Using PZEM-004T Sensor and NodeMCU ESP8266 Microcontroller: A Comprehensive Experimental Evaluation

Main Article Content

Nuraji Permana Putra

Abstract

This study presents experimental validation of an IoT-based household energy monitoring system using PZEM-004T sensor and NodeMCU ESP8266 microcontroller. Twenty testing scenarios were conducted across 10 common household appliances with power specifications ranging from 5W to 561.3W using quantitative R&D methodology. Results demonstrated superior measurement accuracy with 45% of tests achieving ≤5% deviation and 15.8% average deviation compared to nameplate specifications, significantly outperforming conventional clamp meters (31.6% deviation). The system achieved 100% data completeness with sub-2-second latency under stable Wi-Fi conditions, validating IoT reliability for continuous monitoring. Experimental data verified Ohm's Law relationships with strong current-power correlation (r ≈ 0.99). Critical accuracy factors were identified: measurement timing during transient versus steady-state operation (40% of high deviations), worn equipment conditions (30%), and operational mode variations. The PZEM-004T demonstrated robust performance across resistive, inductive, and electronic loads, effectively handling non-sinusoidal waveforms from modern appliances. Integrated real-time cost calculation provided economically meaningful feedback for energy management. Findings confirm that PZEM-004T-based IoT monitoring offers a practical, accurate, and economically viable solution for residential energy management, particularly suitable for developing markets where energy efficiency and cost management are critical concerns.

Article Details

Section
Articles

References

Amin, M. S., Susanti, A., & Airlangga, P. (2025). Rancang Bangun Sistem Monitoring Menggunakan Sensor PZEM 004T pada Listrik Tiga Phase untuk Alat Produksi Menggunakan Mikrocontroller. Jurnal Penelitian Ilmiah Multidisipliner , 1(04), 1100–1108. https://doi.org/10.32764/SAINTEKBU.V13I02.1559

Aribowo, W. (2022). Optimizing Feed Forward Backpropagation Neural Network Based on Teaching-Learning-Based Optimization Algorithm for Long-Term Electricity Forecasting. International Journal of Intelligent Engineering and Systems, 15(1), 11–20. https://doi.org/10.22266/ijies2022.0228.02

Barroca, N., Borges, L. M., Velez, F. J., Monteiro, F., Górski, M., & Castro-Gomes, J. (2013). Wireless sensor networks for temperature and humidity monitoring within concrete structures. Construction and Building Materials, 40, 1156–1166. https://doi.org/10.1016/J.CONBUILDMAT.2012.11.087

Berges, M. E., Goldman, E., Matthews, H. S., & Soibelman, L. (2010). Enhancing electricity audits in residential buildings with nonintrusive load monitoring. Journal of Industrial Ecology, 14(5), 844–858. https://doi.org/10.1111/J.1530-9290.2010.00280

Bonnett, A. H., & Soukup, G. C. (1992). Cause and Analysis of Stator and Rotor Failures in Three-Phase Squirrel-Cage Induction Motors. IEEE Transactions on Industry Applications, 28(4), 921–937. https://doi.org/10.1109/28.148460

Darby, S. (2006). Effectiveness of Feedback on Energy Consumption. Environmental Change Institute.

Emanuel, A. E. (2010). Power Definitions and the Physical Mechanism of Power Flow. Power Definitions and the Physical Mechanism of Power Flow. https://doi.org/10.1002/9780470667149

EPRI. (2009). Motor Starting Studies. Technical Report 1019217.

Espressif Systems. (2020). ESP8266 Technical Reference Manual v1.7. .

Fischer, C. (2008). Feedback on household electricity consumption: A tool for saving energy? Energy Efficiency, 1(1), 79–104. https://doi.org/10.1007/S12053-008-9009-7/METRICS

Furqon, A., Prasetijo, A. B., & Widianto, E. D. (2019). Rancang Bangun Sistem Monitoring dan Kendali Daya Listrik pada Rumah Kos Menggunakan NodeMCU dan Firebase Berbasis Android. Techné : Jurnal Ilmiah Elektroteknika, 18(2), 93–104. https://doi.org/10.31358/TECHNE.V18I02.202

Gubbi, J., Buyya, R., Marusic, S., & Palaniswami, M. (2013). Internet of Things (IoT): A vision, architectural elements, and future directions. Future Generation Computer Systems, 29(7), 1645–1660. https://doi.org/10.1016/J.FUTURE.2013.01.010

Guru, I. (2025). PZEM-004T V3 Module | Arduino & NodeMCU Code, Circuit, Pinout and Library. https://innovatorsguru.com/pzem-004t-v3/

Han, B., Bae, B., Kim, H., & Baek, S. (2006). Combined operation of unified power-quality conditioner with distributed generation. IEEE Transactions on Power Delivery, 21(1), 330–338. https://doi.org/10.1109/TPWRD.2005.852843

Handayani, S., & Setiawan, D. (2024). Analisis Pemanfaatan Sistem Pengendali Dan Monitoring Beban Pada Kwh Meter Prabayar R-1 Berbasis Internet of Things (IoT). Multitek Indonesia : Jurnal Ilmiah, 18(1), 57–71. https://doi.org/10.24269/MTKIND.V18I1.9081

Hart, G. W. (1992). Nonintrusive Appliance Load Monitoring. Proceedings of the IEEE, 80(12), 1870–1891. https://doi.org/10.1109/5.192069

IEC. (2017). IEC 62053-22: Electricity Metering Equipment. IEC Standards. .

IEEE. (2018). IEEE Std 141-1993: Electric Power Distribution for Industrial Plants.

Karuniawan, A. E. (2024). Sistem Monitoring Konsumsi Energi Listrik kWh Meter Secara Real Time pada Rumah Tangga Berbasis IoT. Jurnal Elektro Kontrol (ELKON), 4(1), 15–24. https://doi.org/10.24176/ELKON.V4I1.10951

Kelly, J., & Knottenbelt, W. (2015). Neural NILM: Deep neural networks applied to energy disaggregation. BuildSys 2015 - Proceedings of the 2nd ACM International Conference on Embedded Systems for Energy-Efficient Built, 55–64. https://doi.org/10.1145/2821650.2821672

Krumm, J., Abowd, G. D., Seneviratne, A., & Strang, T. (Eds.). (2007). UbiComp 2007: Ubiquitous Computing. 4717. https://doi.org/10.1007/978-3-540-74853-3

Kusumah, I. M. Y., Jayusman, Y., & Hakim, M. R. (2023). Sistem Monitoring Penggunaan Daya Listrik Berbasis IoT Studi Kasus Pembagian Tagihan Listrik Penghuni Kost. Jurnal Teknologi Informasi Dan Komunikasi, 12(2), 36–52. https://doi.org/10.58761/JURTIKSTMIKBANDUNG.V12I2.3652

Leeb, S. B., Shaw, S. R., & Kirtley, J. L. (1995). Transient Event Detection in Spectral Envelope Estimates for Nonintrusive Load Monitoring. IEEE Transactions on Power Delivery, 10(3), 1200–1210. https://doi.org/10.1109/61.400897

Leferink, F., Keyer, C., & Melentjev, A. (2016). Static energy meter errors caused by conducted electromagnetic interference. IEEE Electromagnetic Compatibility Magazine, 5(4), 49–55. https://doi.org/10.1109/MEMC.2016.7866234

Modbus Organization. (2012). Modbus Application Protocol V1.1b3.

Muslihi, M. T., Studi, P., Listrik, T., Instalasi, D., Komunitas, A., Bantaeng, I. M., & Com, M. M. (2025). Pengembangan dan Evaluasi Sistem Monitoring Konsumsi Daya Listrik Berbasis IoT dengan Sensor PZEM-004T dan ESP8266. JURNAL FASILKOM, 15(1), 77–83. https://doi.org/10.37859/JF.V15I1.8508

NFPA. (2020). NFPA 70: National Electrical Code 2020.

Nilsson, J. W., & Riedel, S. A. (2015). Electric Circuits (10th ed.). Pearson.

Schirmer, P. A., Mporas, I., Schirmer, P. A., & Mporas, I. (2019). Statistical and Electrical Features Evaluation for Electrical Appliances Energy Disaggregation. Sustainability 2019, Vol. 11, 11(11). https://doi.org/10.3390/SU11113222

Setiawan, P. W., Hananto, A. L., Novalia, E., & Hananto, A. (2025). Sistem Monitoring Dan Visualisasi Data Konsumsi Energi Listrik Rumah Berbasis IoT Dengan Aplikasi Blynk. Jutisi : Jurnal Ilmiah Teknik Informatika Dan Sistem Informasi, 14(1), 455–466. https://doi.org/10.35889/JUTISI.V14I1.2675

Sukmasetya, P., Setiawan, A., & Arumi, E. R. (2020). Usability evaluation of university website: a case study. Journal of Physics: Conference Series, 1517(1), 012071. https://doi.org/10.1088/1742-6596/1517/1/012071

Suppa, R., Muhallim, M., Djemma, A., Tandipau, J., Palopo, K., & Selatan, S. (2025). RANCANG BANGUN SISTEM MONITORING DAYA LISTRIK BERBASIS IoT. Jurnal Informatika Dan Teknik Elektro Terapan, 13(2), 2830–7062. https://doi.org/10.23960/JITET.V13I2.6160

UN. (2015). 2030 Agenda for Sustainable Development.

U.S. EIA. (2015). Residential Energy Consumption Survey. Https://Www.Eia.Gov/Consumption/Residential/ .

Zoha, A., Gluhak, A., Imran, M. A., Rajasegarar, S., Zoha, A., Gluhak, A., Imran, M. A., & Rajasegarar, S. (2012). Non-Intrusive Load Monitoring Approaches for Disaggregated Energy Sensing: A Survey. Sensors 2012, Vol. 12, Pages 16838-16866, 12(12), 16838–16866. https://doi.org/10.3390/S121216838

Zurifqyaldi, B., Sistem Monitoring Arus, P., Hasannuddin, T., Zulfadli, T., & Teknologi Rekayasa Pembangkit Energi Jurusan Teknik Elektro Politeknik Negeri Lhokseumawe, P. (2025). Perancangan Sistem Monitoring Arus dan Tegangan Menggunakan IoT pada Plts Off Grid. Jurnal TEKTRO, 9(2), 115–122. https://doi.org/10.30811/TEKTRO.V9I2.8282