Analysis of Load Balancing in Low-Voltage Distribution Substations
Main Article Content
Abstract
This study investigates the impact of load imbalance in low-voltage distribution systems on energy efficiency and operational reliability, focusing on the PHMB substation managed by PT PLN ULP Cirebon Kota. Through a field-based quantitative case study, the research identifies a significant phase current imbalance—exceeding 20%—resulting in a high neutral current (90 A) and monthly energy losses of 358.20 kWh. A load redistribution strategy, shifting 13 A from Phase R and 43 A from Phase T to Phase S, successfully reduced the imbalance to 11.27% and lowered neutral current to 64 A. This intervention achieved a 49.5% reduction in monthly energy losses (saving 177.12 kWh) and halved power losses in the neutral conductor. The study highlights the practical benefits of structured load balancing in improving power quality and energy efficiency in Indonesian distribution networks. Findings contribute empirical evidence for utility-level decision-making and policy design in developing countries, especially where advanced automation is not yet widely implemented.
Article Details

This work is licensed under a Creative Commons Attribution 4.0 International License.
References
Atteya, I. I., Fahmi, N., Strickland, D., & Ashour, H. (2017). Radial distribution network reconfiguration for power losses reduction using a modified particle swarm optimisation. CIRED - Open Access Proceedings Journal, 2017(1), 2505–2508. https://doi.org/10.1049/oap-cired.2017.1286
Chen, T.-H., & Cherng, J.-T. (2000). Optimal phase arrangement of distribution transformers connected to a primary feeder for system unbalance improvement and loss reduction using a genetic algorithm. IEEE Transactions on Power Systems, 15(3), 994–1000. https://doi.org/10.1109/59.871724
Ciontea, C. I., & Iov, F. (2021). A Study of Load Imbalance Influence on Power Quality Assessment for Distribution Networks. Electricity, 2(1), 77–90. https://doi.org/10.3390/electricity2010005
Darabi, A., Hassannia, A., Saedi, M., & Moeini, A. (2010). Sequence Impedances criterion for loss of main detection of embedded generation. 2010 9th International Conference on Environment and Electrical Engineering, 254–259. https://doi.org/10.1109/EEEIC.2010.5489986
Gawrylczyk, K. M., & Trela, K. (2019). Frequency response modeling of transformer windings utilizing the equivalent parameters of a laminated core. Energies, 12(12). https://doi.org/10.3390/en12122371
Grigoraș, G., Triștiu, I., Gavrilaș, M., Bulac, C., & Neagu, B.-C. (2020). Optimal Phase Load Balancing in Low Voltage Distribution Networks Using a Smart Meter Data-Based Algorithm. Mathematics, 8(4), 549. https://doi.org/10.3390/math8040549
Hooshmand, R. A., & Soltani, S. (2012). Fuzzy Optimal Phase Balancing of Radial and Meshed Distribution Networks Using BF-PSO Algorithm. IEEE Transactions on Power Systems, 27(1), 47–57. https://doi.org/10.1109/tpwrs.2011.2167991
Huang, J., Guan, L., Su, Y., Yao, H., Guo, M., & Zhong, Z. (2021). A topology adaptive high-speed transient stability assessment scheme based on multi-graph attention network with residual structure. International Journal of Electrical Power & Energy Systems, 130, 106948. https://doi.org/https://doi.org/10.1016/j.ijepes.2021.106948
Huang, Z., Xu, X., Fan, Y., Wang, Z., Shang, B., Shang, M., Yu, W., Wu, Y., Li, D., & Lin, M. (2023). Online monitoring of the voltage stability margin using local minimax concave penalty regression and adaptive database. International Journal of Electrical Power & Energy Systems, 149, 109046. https://doi.org/https://doi.org/10.1016/j.ijepes.2023.109046
Kong, W., Ma, K., & Wu, Q. (2018). Three-Phase Power Imbalance Decomposition Into Systematic Imbalance and Random Imbalance. IEEE Transactions on Power Systems, 33(3), 3001–3012. https://doi.org/10.1109/tpwrs.2017.2751967
Lin, C.-H., Huang, C.-W., Huang, M.-Y., Chen, C.-S., & Chuang, H.-J. (2008). An Expert System for Three-Phase Balancing of Distribution Feeders. IEEE Transactions on Power Systems, 23(3), 1488–1496. https://doi.org/10.1109/tpwrs.2008.926472
Ma, K., Li, R., & Li, F. (2016). Quantification of Additional Asset Reinforcement Cost From 3-Phase Imbalance. IEEE Transactions on Power Systems, 31(4), 2885–2891. https://doi.org/10.1109/tpwrs.2015.2481078
Makhadmeh, S. N., Khader, A. T., Al-Betar, M. A., Naim, S., Abasi, A. K., & Alyasseri, Z. A. A. (2019a). Optimization methods for power scheduling problems in smart home: Survey. Renewable and Sustainable Energy Reviews, 115, 109362. https://doi.org/https://doi.org/10.1016/j.rser.2019.109362
Makhadmeh, S. N., Khader, A. T., Al-Betar, M. A., Naim, S., Abasi, A. K., & Alyasseri, Z. A. A. (2019b). Optimization methods for power scheduling problems in smart home: Survey. Renewable and Sustainable Energy Reviews, 115, 109362. https://doi.org/https://doi.org/10.1016/j.rser.2019.109362
Matus, M., Cáceres, N., Püschel-Løvengreen, S., & Moreno, R. (2015). Chebyshev based continuous time power system operation approach. 2015 IEEE Power & Energy Society General Meeting, 1–5. https://doi.org/10.1109/PESGM.2015.7286570
Mulenga, E., Bollen, M. H. J., & Etherden, N. (2021). Solar PV stochastic hosting capacity in distribution networks considering aleatory and epistemic uncertainties. International Journal of Electrical Power & Energy Systems, 130, 106928. https://doi.org/https://doi.org/10.1016/j.ijepes.2021.106928
Sayed, M. A., & Takeshita, T. (2014). Line Loss Minimization in Isolated Substations and Multiple Loop Distribution Systems Using the UPFC. IEEE Transactions on Power Electronics, 29(11), 5813–5822. https://doi.org/10.1109/tpel.2014.2301833
Setlhaolo, D., & Xia, X. (2016). Combined residential demand side management strategies with coordination and economic analysis. International Journal of Electrical Power & Energy Systems, 79, 150–160. https://doi.org/https://doi.org/10.1016/j.ijepes.2016.01.016
Snodgrass, J., & Xie, L. (2020). Overvoltage analysis and protection of lightning arresters in distribution systems with distributed generation. International Journal of Electrical Power & Energy Systems, 123, 106209. https://doi.org/https://doi.org/10.1016/j.ijepes.2020.106209
Wang, S., Zhao, D., Yuan, J., Li, H., & Gao, Y. (2019). Application of NSGA-II Algorithm for fault diagnosis in power system. Electric Power Systems Research, 175, 105893. https://doi.org/https://doi.org/10.1016/j.epsr.2019.105893
Wu, X., Zhang, K., Cheng, M., & Xin, X. (2018). A switched dynamical system approach towards the economic dispatch of renewable hybrid power systems. International Journal of Electrical Power & Energy Systems, 103, 440–457. https://doi.org/https://doi.org/10.1016/j.ijepes.2018.06.016
Zhang, P., Dou, X., Zhao, W., Hu, M., & Zhang, X. (2019). Analysis of Power Sales Strategies Considering Price-Based Demand Response. Energy Procedia, 158, 6701–6706. https://doi.org/https://doi.org/10.1016/j.egypro.2019.01.019